mbir - Magnitude-Based Inferences
Allows practitioners and researchers a wholesale approach for deriving magnitude-based inferences from raw data. A major goal of 'mbir' is to programmatically detect appropriate statistical tests to run in lieu of relying on practitioners to determine correct stepwise procedures independently.
Last updated 6 years ago
2.48 score 1 stars 15 scripts 282 downloadsmlf - Machine Learning Foundations
Offers a gentle introduction to machine learning concepts for practitioners with a statistical pedigree: decomposition of model error (bias-variance trade-off), nonlinear correlations, information theory and functional permutation/bootstrap simulations. Székely GJ, Rizzo ML, Bakirov NK. (2007). <doi:10.1214/009053607000000505>. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. (2011). <doi:10.1126/science.1205438>.
Last updated 7 years ago
1.08 score 12 scripts 156 downloads